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Refined Chiral Slavnov—Taylor Identities:
Renormalization and Local Physics
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We study the quantization of chiral QED with one family of massless fermions and the
Stueckelberg field in order to give mass to the Abelian gauge field in a BRST-invariant
way. We show that an extended Slavnov—-Taylor (ST) identity can be introduced and
fulfilled to all orders in perturbation theory by a suitable choice of the local actionlike
counterterms, order by order in the loopwise expansion. This ST identity incorporates
the Adler—Bardeen anomaly and involves the introduction of a doulef)( whereK is

an external source of dimension 0 arid the ghost field. By a purely algebraic argument
we show that the introduction of the souiKérivializes the cohomology of the extended
linearized classical ST operats, in the Fadeev—Popov (FP) chargé sector.

We discuss the physical content of the extended ST identity and prove that the
cohomology classes associated wiffare modified with respect to the ones of the clas-
sical BRST differentias in the FP neutral sector (physical observables). This provides a
counterexample showing that the introduction of a doublet can modify the cohomology
of the model, as a consequence of the fact that the counting operator for the dublet (
c) does not commute witl§).

We explicitly check that the physical states definedsbgre no more physical
states of the full quantized theory by showing that the subspace of the physical states
corresponding tc is not left-invariant under the application of the S matrix, as a
consequence of the extended ST identity.

KEY WORDS: anomalies; renormalization; BRST; chiral.

1. INTRODUCTION

In perturbative quantum field theory, the full physics can be derived from the
quantum effective actiol[¢, x], depending on the quantized fielgsand the
external sourceg coupled to local composite operat@@$x). I'[¢, x] admits a
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394 Picariello and Quadri

formal power series expansion in the loop parameter

oo
Mg, x1 =Y _h"T®[4, x]. €Y
n=0
The zeroth-order coefficierit©® is identified with the classical action and it is
assumed to be a local functionalg@find .

If T[¢, x] is known, S matrix elements can be computed by using the LSZ
reduction formulae (Itzykson and Zuber, 1985). Connected amplitudes are gener-
ated by the Legendre transfoN[ J, x] of I'[¢, x] with respect to the quantized
fields¢:

W[J, x] = I[¢, x] +/d4x $J, J= (SF[S‘Z; o1 x]. @)
The physics is then recovered by computing the functional derivativés wfth
respect to the external sources coupled to physical composite operatbes at
x =0.

If I ©)is power-counting renormalizable, the renormalization procedure (Velo
and Wightman, 1975) provides a way to compute all higher-order terms in the
expansion in Eq. (1), by fixing order by order only a finite set of local actionlike
counterterms. This procedure is a recursive one, since it allows to congffuct
once thaf"), j < n, are known. From a combinatorial point of view, it turns out
thatI" is the generating functional of the 1-PIl renormalized Feynman amplitudes.

The behavior of the renormalized quantum effective action under an infinites-
imal variation of the quantized fields is embodied in the so-called Quantum Action
Principle (Breitenlohner and Maison, 1977; Lam, 1972, 1973; Lowenstein, 1971).
It states that for every local bilinear operatds depending on a set of exter-
nal sourcesp” coupled to local operatogp; polynomial in the fields and their
derivatives, the following relation holds true, to all orders in perturbation theory:

6T
s = [ 25w o0 = x2 m(x)

The operator8e; can be identified at the classical level with the |nf|n|tesimal trans-
formations of the fieldg;. In the R.H.S. of Eq. (3)x are external sources coupled
to suitable local composite operatdg(x), with bounded dimension. Notice that
in general the external sources can have negative dimensions. Equation (3) states
that the application of the operatSrto I is equivalent to the insertion of the set
of local operatorg)y(x) to all orders in perturbation theory.

In some cases it happens that

Sr9%=o (4)

but no choice of the local actionlike counterterms to be fixed order by order in
perturbation theory can be made in such a way that the R.H.S. of Eq. (3) is 0. In

®)
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this case a classical symmetry is violated at the quantum level by the R.H.S. of
Eq. (3), and one usually speaks of an anomaly to describe this kind of behavior of
the quantum effective action (Piguet and Sorella, 1995).

In actual calculations, the possible breaking terms are considered order by
order in the loopwise expansion. Assume then that the effective action has been
constructed up to order — 1 so that

smP =0, j=0,...,n—1. (5)
From Eqg. (3) we see that
A = Sy (6)

is a local integrated polynomial in the fields and external sources and their deriva-
tives, with bounded dimension.

Let us now specialize to gauge theories. We idenfifwith the Slavnov—
Taylor operator corresponding to the classical BRST symmetry (Bestchi,
1974; Tyutin and Lebedev, 1975). It turns out in this case &k is further
constrained by a set of consistency conditions (Wess and Zumino, 1971), stemming
from the nilpotency of the BRST transformation. These consistency conditions are
written in a functional way as

SoA™ =0, 7
whereS, denotes the classical linearized ST operator

sTO sAM  sAM 51O
n _ 4
S0A™ = / d Xiz <5¢i*(x) 5600 307 (X) 54, (x))‘

Because of the nilpotency &% and the locality ofA(™, Eq. (7) provides a way to
characterizeA™ by studying the cohomology af, in the space of Lorentz-
invariant local functionals with bounded dimension and Faddeev—Popov (FP)
charge+1 (Piguet and Sorella, 1995). If the only solutions to Eq. (7) are co-
homologically trivial, then it can be shown that the ST identities can be restored
at thenth order by a suitable choice ath-order actionlike counterterms. Other-
wise the breaking term\(" can never be reabsorbed by a choice ofrttreorder
actionlike counterterms, and the theory is truly anomalous.

We notice that the recursive assumption in Eq. (5) is essential in this process: if
one fails to restore the ST identities at lower orders, th€hactually turns out to be
a nonlocal functional of the fields and external sources and their derivatives, hence
it cannot be removed by a suitable choicentifi-order actionlike counterterms
even for cohomologically nonanomalous theories (Picariello and Quadri, 2001).

In this standard approach of studying which symmetries are preserved upon
quantization, only a small consequence of the QAP is used, i.e. the locality of the
operatorg)y(x) in the R.H.S. of Eq. (3) is invoked to guarantee th& in Eq. (6)

(8)
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is a classical local polynomial in the fields and external sources and their derivatives
of bounded dimension, provided that Eq. (5) is satisfied. The full power of the QAP
in Eq. (3), i.e. the fact that the application of the operdidp I" is equivalent to
the insertion of the set of local operators in the R.H.S. of Eq. (3), to all orders in
perturbation theory and independently of the actionlike local counterterms chosen
order by order in perturbation theory, remains somewhat unexploited.

A more effective, alternative approach to use Eg. (3) would be to regard
the anomaly as a quantum modification of the oper&tavhose deformation is
given by

©)

AS(D) = —/d“x Z &k(x)

In this way there is a symmetry obeyed by the quantum effective attion
(S+ AS)(T") =0. (10)

Recently it has also been pointed out that the introduction of suitably defined
external sourceg allows to construct an extended linearized classical ST operator,
trivializing the cohomology of the model (Barnich, 2000).

In the present paper we apply this approach to chiral QED with one family
of massless fermions. We introduce the Stueckelberg field in order to give mass to
the Abelian gauge field in a BRST-invariant way. We study the quantization of the
model and show that an extended ST identity can be introduced and fulfilled to all
orders in perturbation theory by a suitable choice of the local actionlike counter-
terms, order by order in the loopwise expansion. This ST identity incorporates the
Adler—Bardeen anomaly.

We point out that the corresponding linearized classical ST operator is nilpo-
tent. However, the physical observables (defined as the cohomology classes of the
linearized classical ST operator in the space of local FP neutral functionals) turn out
to be modified with respect to the ones induced by the classical BRST differential
Moreover, the space of asymptotic states that are physical according to the clas-
sical BRST differentias is not invariant under the S matrix. This is a consequence
of the extended ST identities obeyed by the quantum effective aktion

2. EXTENDED ST IDENTITIES FOR CHIRAL QED
We consider the classical Lagrangian of chiral QED with one family of mass-
less fermions and a massive gauge fia|d

L=— 4W+|¢Dw+ mA2+ b2 abd A

1 m? _ _
+ 50 Bo“B — o B? + «ClIc + m2cc. (11)
o
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D, is the covariant derivative

. (1+y°)
IGT

B is the Stueckelberg field (Delbourga al, 1988; Glauber, 1953; Grassi and
Hurth, 2001; Slavnov, 1972; Stueckelberg, 1938)s the Nakanishi—Lautrup
field (Lautrup, 1967; Nakanishi, 196&)andc are the ghost and antighost fields,
respectivelyw is the gauge-fixing parameter. _

We assign the FP charge by requiring that v, v, b, andB have FP charge
0, chas FP charge 1, andc has FP charge-1.

L is invariant under the following BRST transformations:

D, =9, — A, (12)

_ m m?
SA, = 0,C, sc=b+;B, sb:—;c, sB=mg

5 _ (1 _ 4,5
swziewl//c, SY = —i ecw(1 Zy)’ sc=0. (13)

s is nilpotent. In order to define at the quantum level the composite opemtors
andsy appearing in Eq. (13) one has to couple them in the classical acfioro
classical external sourcesandn (known as antifields in the Batalin—Vilkovisky
formalism (Gomiset al,, 1995):

5 (1 _.,5
ro = /d“x <z: —i eﬁ@xﬁc —i ecw%ﬁ S C)

The invariance of’©@ under the BRST differentia is now expressed as (Zinn-
Justin, 1975)

sT@ m _\ éTr©@ sT@
S(ro Efd“x 9,c—— (b —B)—_ me——
() HTSA, LA sc TMoB
m2 sT@  sr@sr@ 5r<°>5r<0>> 0

C —
a5b+5n81//+8n81ﬁ

(15)

In the above equation we have introduced the ST ope&tdhe bilinear part is
only reduced to the fermion sector since the BRST variation’,céndc, being
linear in the quantized fields, do not require the introduction of the corresponding
antifields. The requirement thaf?) is FP neutral implies that the antifielgsand
n carry FP charge-1.

The dependence &f® onb, B, andc is given by

sTO sTO m?
W:ab—aaA, W=—<D+;) B, (16)
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and

STO©
o = uc m?c. (17)

The last equation is known as the classical ghost equation. The R.H.S.s of Egs. (16)
and (17) are linear in the quantized fields, hence we can preserve the above equa-
tions at the quantum level by a suitable choice of local actionlike counterterms,
order by order in the perturbative expansion.

So we require that the full quantized effective activsatisfies the conditions

8T 8T m?
E:ab—aaA, £=—<D+?) B, (18)
and
r
(;—C_ = a0c + mZc. (19)
The second of Egs. (18) entails tHatis a free field. By Eq. (19) the ghost field
decouples.

We notice that the classical actio¥) in Eq. (14) is CP-even. We require that
the full quantized effective action is also CP-even.
By the QAP and Eq. (15), the first-order ST breaking term

AW = s)® (20)

is a Lorentz-invariant integrated polynomial in the fields and the external sources
and their derivatives with dimension less or equal to 5 and FP chargé®l.
satisfies the Wess—Zumino consistency condition

So(AW) =0, (21)
whereS, is the classical linearized ST operator given by
So = /d“x (aﬂc% + (b+ gB) ;_—i-m % - %2 ;—b
sr@ s s7@ s s1@ 5 57O §
S sy oy &1 on &y | oy %)
Taking into account the fact thatis CP-even, the solution of Eq. (21) is (Barnich
and Henneaux, 1994).

(22)

AD =y / d*X Cepupo 8" AV A + So(ED) (23)

for some local actionlike function&®. The breaking ternso(2() can be reab-
sorbed by adding t6™ the counterterm functionat 1), This amounts to change



Refined Chiral Slavnov—Taylor Identities 399

the first-order normalization conditions (Ferratial, 2000; Ferrari and Grassi,
1999).
A®) is thus reduced to the following Adler—Bardeen chiral anomaly:

Al =r / d¥X Cepppo O AV A (24)

for some nonzer@-numberr. r cannot be set equal to 0 by any choice of the
local actionlike first-order counterterms IHY). The ST breaking in Eq. (24) is
an anomalous one. As a consequence, the second-order ST breakingftesm
S(I')@ turns out to be a nonlocal functional of the fields and external sources and
their derivatives (Picariello and Quadri, 2001).

Owing to the Abelian character of the model, we can write from Eq. (24)

sr@
SK -~

SOV =r / d*X Ceppypo M AVDP AT = / d*x ¢ (25)
This is only possible since the ghost field decouples in the Abelian case, because
of the ghost equation in Eq. (19K is an external source coupled it® to the
Adler—Bardeen term,,,,,, 3" A"9” A°. Notice thatk has dimension 0.

In the spirit of Eqg. (10), we can deform the operafointo S’ defined by

)
S=8 d*x c—. 26
+/ X C8K (26)

It then follows that
S'T)® =o. (27)

One should regard the operat8tin Eq. (27) as defining the (extended) chiral
symmetry of the model.

We now show that the ST identity associated withcan be restored to all
orders in perturbation theory. The proof is a recursive one.

Forn = 0 we have

S(r9%=o0 (28)

sinceI’© does not depend oK. Forn = 1 the extended ST identity is satisfied
(see Eq. (27)). Assume that it is fulfilled till order— 1:

sSm¥P =0, j=0,1,...,n—1 (29)

We shall prove that the extended ST identity can be fulfilled ahtheorder by a
suitable choice of thath-order local counterterms. We point out that sikcbas
dimension 0, power-counting arguments cannot be effectively used to constrain
the dependence a™ on K.
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We first notice that the following algebraic identity holds true for every
bosonic functional™:

Sp(s'(r) =0, (30)
whereS. is the linearized extended ST operator For
8 m_\ 8 s m s
St = [d*(d,c b+ —B)—=+mc— — —C—
r / (”aA,tJr(Jra >Sc+ 5B o Job
oT" 6 +6F8+6F 8 +8F8+C(S
snéy  Sydy  snsy  Sysy 8K )T

By using Egs. (30) and (29) we obtain the following Wess—Zumino consistency
condition for thenth-order breaking term\ (™ = S(I")™:

(31)

So(a™) =0, (32)
whereS] is the extended classical linearized ST operator given by
8 m _\ & § m? s 610 5
Sy= [ d*x(d,c— + (b+ —B) —+mc— — —c— S
0 / <”3Aﬂ+(+a )Sc+ 5B o b | sn 8y
sr@ s N sTO 5 N sTO 5 te 8
sy 8y 8p sy Sy &n 8K
1)
=S d*xc—. 33
o+ [ ey (33)

Notice thatSj? = 0. By the QAPA ™ is a local functional of the fields and external
sources with dimension less or equal to 5 and FP chafge
By explicit computation it can be shown by using Egs. (18) and (19)Akat
does not depend dm B, andc and is a functional o®*, c, ¥, ¥, , andn only.
Moreover, by power counting™ cannot depend on ands. Having ruled
out the dependence on all fields and external sources with negative FP charge, we
see thatA(" depends on the ghost fietcbnly linearly:
n
/ d*x c(m—() =AM, (34)
sc
We notice thatA™ is a polynomial with respect to the quantized fields, v,
andyr, since they have positive dimension. However, it can be a truly formal power
series in the dimensionless external soufce
We now show that ™ is theS} image of a local actionlike functional (i.e. the
cohomology ofS; is empty). For this purpose we introduce the counting operator
for K,

N = /d"’x Ki, (35)
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and decomposa ™ according to the degree induced

&)
AO=3"AD, NAD = Al (36)
j=0

We can always reabsozbg’) in Eqg. (36). Indeed, by standard cohomological
results (Barnich and Henneaux, 1994; Piguet and Sorella, 1995) and taking into ac-
count the CP-evennessbfit is known thatAg') can always be reduced by adding
suitable locahth-order counterterms independenkofo the Adler—Bardeen term:

AP =@ / d*X Ce o 04 AV 0P A°. (37)
This is compensated by the counterterm
gV = —r® / d*X Ke 00" A”07 A, (38)
Assume now thaA(j”) =0forj=0,...,m— 1. We show that one can add

suitably defined local actionlike countertermsIt®® in such a way than® is
also 0. For this purpose we define the operator (Zumino, 1983)

1
1)
= [ dt | d**x Ki—. 39
r= [ etk (39
In the previous equation we have introduced the operatgiven by
amAD(c, K, ) = AD(tc, tK, @), (40)

where we have denoted lpyall fields and external sources other tltsandK on
which AM might dependH is a contracting homotopy for the differential

F)
= [ d*xc—, 41
- / xe (41)
since
() ! 4 8 S\ A
{H,o}A" (K, c, ¢) = dt | d™%x | Kiy— +cai— ) A(K, ¢, ¢)
0 SK éC
= AWK, c, ¢) — AM(0, 0,9). (42)

We now notice that the following identity holds true for any function&p
obeying Eq. (34):

{(H, o}AD(K, ¢, ) = SH(HAM) — So(HADM), (43)
so that by Eq. (42)
AD(K, ¢, 9) — AM(0, 0,9) = SH(HAM) — So(HAM). (44)
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By assumption we can write
A =3 AD. (45)
k>m
Inserting Eq. (45) in Eq. (44) we obtain
AM(K, ¢, ¢) — AP(0,0,¢) = Y AP = Sy(HAM) — So(HAM)  (46)
k>m
and finally
AP — SH(HAM) = —Sp(HAM). (47)
k>m

Since Sy does not depend oK, the R.H.S. of Eq. (47) admits an expansion
according to the degree induced hystarting fromm + 1. HenceA™ can be set
equal to 0 by adding t&'™™ the counterterm

1 SAM
Efﬂ) =HAM = —/ d4X/ dt K sc (48)
0

This concludes the proof that the extended ST identity can be restored to all orders
in perturbation theory.

3. PHYSICAL OBSERVABLES

We have shown that the quantum effective aclicsatisfies the extended ST
identity

S'(T) = 0. (49)

Moreover, the corresponding linearized classical ST ope&{iis nilpotent. We
now investigate the consequence on the physics of the extended ST identity in
Eq. (49). We identify physical observables with the cohomology classes of the ex-
tended linearized ST operatj in the space of local functionals with FP charge 0.
The physical observables generatedpwre different from the ones obtained from
So. Inthe present model the latter coincide with the ones obtaineddi@&arnich
and Henneaux, 1994). We first work out an example and then discuss the general
situation.

We consider the gauge mass term

1
M= /d“x émzAi. (50)
M is neither anSe-invariant nor arSy-invariant. However, the functional

My EM+m2/d4x <K8A— %KDK) (51)
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is anSg-invariant. By explicit computation it can be verified th&tk is not the

&, variation of any local functional with FP chargel, hence it identifies a true

observable of the theory. Notice that is not anSg-invariant, thus it does not

belong to the cohomology o in the space of local functionals with FP charge 0.
We now go on shell by imposing the conditions

5T
sp

The second of the conditions in Egs. (52) ent&ils= 0, hence on shell the repre-
sentativeM  has to be identified wittM: the mass term for the gauge field is an
on-shell observable of the model.

This mechanism of extension of the cohomology due to the introduction of
the sourceK applies to the whole FP neutral sector of local functionalsd ké
a local functional with FP charge 0. Thexi = Sy(G) is a local functional with
FP charget1, and by the arguments of the previous section there exists a local
functionalR depending orK and all other fields and external sources of the model
such that

0, x=0. (52)

A = S)(R). (53)

‘R is not uniquely defined. Notice in particular tHatcan be chosen in such a way
thatR |k—o = 0. This follows from the arguments of Section 2.
Hence

S4(G —R) =0. (54)
This means that
Gk =G—R (55)

is a representative of the cohomology class of a local obser@@ble

Going on shellGk reduces td@7; hence in the extended theory governed by
&, every functional whose, variation is nonzero is actually a representative of
an on-shell local observable.

We conclude that the physical content of the quantized theory governed by
S; has changed with respect to the classical theory, whose physics is described by
the local FP neutral cohomology classes of the classical BRST differantial

This can also be checked by studying the time-evolution of the asymptotic
states that are physical according to the classical BRST differantial

We follow the technique discussed in Becchi (1983). According to the reduc-
tion formulae the connected S matrix can be expressed as

S=:%:W[J, x] ls=4=o0, (56)
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where the operatat is defined by

exp(f d*x d*y @ (X)j (x — (57)

8J; (y)>

and :: stands for normal ordering; are linear combinations of the asymptotic
fields ¢S,

¢ = aj %, (58)

where the matrix;j is invertible (Becchi, 1983). In Eq. (57) we have denoted by
subscripts the functional differentiation with respect to the argumerit§¢nfx ]
evaluated ap = x = O:

821
5¢i (X); (y)
In the following, J; denotes the external source coupled,td, the source coupled
to A, Jzthe one coupled to, and so on.

The extended ST identity on the connected generating functidfd| ]
reads

Tij(x—y)= (59)

¢=x=0

S'(W) = S(W) — / d*x %% =0, (60)

with S(W) given by

SW SW msw SW
S(W)z_/d“x( 3+ (—+m )JC +mi 5

"8de 8§ «adds §Jc
mZSWJ SWJ +5wJ_ 61)
a 8Jc b+ s VT ey v )

We introduce the operatdD (Curci and Ferrari, 1976; Kugo and Ojima, 1978)
acting on the fieldg; defined by

[Q AJ =3¢ (Qcl=0, (Q&=b+B, [QB]=mg

2

[Q.b] = —%c, Q) =0, {(Q¥}=0. (62)

Q expresses the action induced by the classical BRST differsmtiathe fieldsy; .
Notice thatQ is nilpotent. The physical subspace corresponding to the conomology
generated by the classical BRST differensiaan be identified with k&)/ImQ.
However,Q does not commute with the S matrix.
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For that purpose, we first compu®]: X :]and get (in the momentum space
representation)

2
[Q,:X:]=: /d“p[c <ip“1",w — EFDV + mFBv> 8? +c<|p“F,LB
o

sz + mr ) +c|ip*l mZF + mr 8
a bB BB 538 pP"Tup bb Bb SJb

m 1)
m? b b
=: | d*p|clip*T,, — —T%, cmlgg——
/ p[ <'p vy D)SJ Femeegs,

m? h) m k)
“T b — —F b+ —B)lee— | 2 ;. 63
( P™ L bb) 53 ( + o ) CCSJC1| ( )

In the second line of the above equation we have taken into account Egs. (18).

We then use the extended ST identity to constrain the two-point functions
appearing in Eq. (63):

828'(IN) . m?
= ”’F v — _FV FV = 0,
SCOA |y DT g T
828'(T m
() =mlgg+ —TI'ez=0, (64)
5¢8B |, o
828'(IN) . m?
=ip"Tyup + Feg — —Tpp =
56D |, o IP*Tup + ez o L bb 0,

by using again Egs. (18). We now insert Egs. (64) into Eq. (63) and get

8 8 § m 8
[Q:=:]=: /d“p[ clyk — + blge— — clgg— — —Cleg——
8J, 8 o

Je 3Jp 3
m 8
—Blee— [ Z: 65
+ ere | ©5)
One also gets
[ XS] = /d“p (—A*T .k +bl“*)i —cr 2
. . . n cc SJC CCSJb
m ) 8
— —BI'x F 2 66
"Bl CCSJB] (66)

This follows by explicit computation once that Eqgs. (64) are taken into account.
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By combining Eqs. (65) and (66) we get

) )
2] =[2: | d*p( ATk — —clik— | = ;. 7
Q% =[ 258k [ d'p (AT — oy )BE (67)
We now notice that
SW §W
C L SIW) g0 =03 A ——
2SI =2 ([as SN e

In the Abelian case we can use the ghost equation in Eq. (19) to obtain from
Eq. (68)

1)

. . . 4 .
[ X SI(W)|jey=0 = ./d XC(X)(SK(X)E W o (69)
Hence by Eq. (69)
[Q, S =[Q,: X ]W |5-4=0
8 8 8
=:[d*p (AT,Kk— —CT)k—+C— | =W (7
[ atp (AT —erucs o) o
The R.H.S. of Eq. (70) is O if
W _ar _”
SK 8K

The above equation is satisfied at tree level, but cannot hold true at the quantum
level because of the appearance of the Adler—Bardeen anomaly. We thus conclude
that the physical subspace associated to the classical BRST differeigiabt
invariant under the application of the S matrix.

As a final point of this section, we notice that the cohomology of a nilpotent
differential § is known to be independent of the doublety), z = w, éw = 0,
whenever (Piguet and Sorella, 1995)

where/ is the counting operator for the doublet (v):
8 8
4
= — — ). 7
N fd X<282+W8W> (73)

The analysis carried out in this section shows that this result cannot be extended to
more general situations where Eq. (72) is not fulfilled: for the extended linearized
ST operatoiS; Eq. (72) is not satisfied and the conomologysgin the FP neutral
sector is actuallK-dependent.
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4. CONCLUSIONS

In this paper we have performed the quatization of chiral QED with one family
of massless fermions. We have introduced the Stueckelberg field in order to give
mass to the Abelian gauge field in a BRST-invariant way and we have shown that
an extended ST identity can be introduced and fulfilled to all orders in perturbation
theory by a suitable choice of the local actionlike counterterms, order by order in
the loopwise expansion.

This ST identity incorporates the Adler—-Bardeen anomaly and involves the in-
troduction of an external sour¢€e of dimension 0. By a purely algebraic argument
we have shown that the introduction of the soukcérivializes the cohomology
of the extended linearized classical ST oper&pin the FP charge-1 sector.

We have then discussed the physical content of the extended ST identity. We
have shown that the cohomology classes associatedSyitire modified with
respect to the ones dy. This provides a counterexample showing that, if the
counting operator for the doublet, (v) does not commute with the nilpotent
differential § under which ¢, w) forms a doublet, the cohomology éfactually
depends org, w). Hence the local physics generateddgys modified with respect
to the one issued froify. Since the latter is the same as the one generated from the
classical BRST differential, the physical states correspondisgitonot survive
quantization. We have explicitly checked this result by showing that the subspace
of the physical states correspondingstis not left-invariant under the application
of the S matrix, as a consequence of the extended ST identity satisfied by the
quantum effective action.
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